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All the colored crystallographic and icosahedral point groups that obey the van der Waerden and 
Burckhardt definition are tabulated here, using a symbolism based on a suggestion of Shubnikov and 
Koptsik. Each asymmetric domain of the object has a single color-or scalar quality. The symbol 
of each colored point group G(H" I H) contains G, the geometrical point group of the object; its sub- 
group H '  that is the point group of each of the object's monochromatic domains; and H, the invariant 
subgroup of G that is the intersection of all the conjugate subgroups H'. If H'  and H are the same, 
the symbol G(H'IH) is changed to G(H). If H is chiral, so is the colored point group. If G is not 
chiral, but H is, the chirality is only chromatic. These phenomena are listed in the table. If more color 
permutations are possible than occur in the operations of a colored point group, different arrange- 
ments of the same colors on the same geometrical object are fundamentally different: these are 
called diamorphs of each other; their number is listed. 'Color', as used here, symbolizes any scalar 
property that can vary from one asymmetric domain to another. 

Introduction 

The definition of a colored point group used here is 
based on that in the classic paper of van der Waerden 
& Burckhardt (1961). Let the point group ofn classical 
geometrical symmetry operations of a finite object be 
symbolized by G. This object will have a colored 
symmetry point group GP, if each of the n asymmetric 
domains of which it is composed has a single color, 
and if these are distributed in such a way that a group 
of color permutations p~ can be combined with the 
classic group of operations g~ of G to form a group of 
operations g~p~, each of which restores the object to a 
condition indistinguishable from its original state. The 
group of n operations g~pg, i= l , . . . , n  is the colored 
symmetry point group GP of the object. 

Suppose there are s different colors (s < n) present on 
the object's subunits. For a color permutation p~ to 
be possible, there must be the same number of units of 
each color. Also, since a geometrical symmetry opera- 
tion g~ replaces all the subunits of a certain color by 
those of another, each set of subunits of any one color 
must have the same geometrical structure. Each such 
set of like-colored asymmetrical subunits has a geom- 
etrical point group H '  which must be a subgroup of 
G ( H ' c  G). Its order is n/s, of course.* The s different 
subgroups H '  of G are geometrically conjugate to one 
another, and their intersection H is an invariant sub- 
group of G (H<~ G) of index t. H is the set of operations 

* Two subgroups H" belonging to differently colored do- 
mains may possess some, or all, of their symmetry elements in 
common; they must nevertheless be counted separately, one 
to each color. 

of G which requires no permutation of the colors, i.e. 
which combines with the non-permutation ( - )  of the 
colors. The t members of the factor group (G/H) are 
H and its cosets, each of which combines with a par- 
ticular color permutation; consequently, the color 
permutation group (or subgroup) P, that combines 
with G to form PG, also has the order t. If t = n, H =  1, 
and P is isomorphic with G (P ~-~ G). Otherwise, G is 
homomorphic onto P (G--~ P), and n/t geometrical 
operations gi correspond to a particular color per- 
mutation ps. 

Following a suggestion of Shubnikov & Koptsik 
(1974), in their book Symmetry in Science and Art, the 
colored point group of an object will be symbolized in 
these tables by G(H'[H) or, if H '  and H are the same, 
by G(H). (Incidentally, Chapter 10 of this book con- 
tains an excellent outline of group theory.) In these 
tables G, H' ,  and H will be written in the standard 
abbreviated Hermann-Mauguin notation, and no 
attempt will be made to make the positions in the 
symbols for G, H' ,  and H correspond with one 
another. I find that this attempt - made by several 
authors, including Shubnikov & Koptsik - leads to a 
great deal of confusion. 

Structure of the Table 

The Table of Colored Point Groups is divided into 
sections, as follows: 

I. Triclinic, II. Monoclinic, III. Orthorhombic, IV. 
Hypotetragonal, V. Hypotrigonal, VI. Hypohexagonal, 
VII. Holotetragonal, VIII. Holotrigonal, IX. Holo- 
hexagonal, X. Hypocubic, XI. Holocubic, XII. Icosa- 
hedral. 
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The nomenclature used here was suggested by J. D. 
H. Donnay,  for which I thank him. 

Each section of  the Table consists of  columns 
with the following headings: 

G is the classic point  group on which the colored 
point  groups in each class are based. The international  
abbreviated H e r m a n n - M a u g u i n  notation is used. 

H '  is the subgroup of  G that  is the point  group of 
each set of  asymmetric  subunits of  the object that all 
have the same color, i.e., the symmetry of  a mono- 
chromatic domain  of the polychromatic  object. Its 
order is m'. 

s is the number  of different colors in the colored 
object with the point  group GP. It is obtained by 
dividing n, the order of  G, by m', the order of  H ' .  
(If H ' = I ,  s = n . )  

H is the invariant  subgroup of  G that consists of  the 
geometrical elements common  to all the different 
conjugate subgroups H '  of  the object. In sections I 
through VI H is always the same as H ' ,  and this 
column is absent. In sections VII through XII there is 

II. 

Table  o f  the colored crystal lographic  and 
icosahedral  point  groups 

Tr~linic 

t7 H" s F d 
1 1 1 C1 1 

I I 1 Ct 1 
1 2 C2 1 

Monoclinic 

17 H" s F d 
2 2 1 Ct 1 

1 2 C2 1 

ra m 1 Ct 1 
1 2 C2 1 

2[m 2/m 1 Ct 1 
2 2 C2 1 
m 2 .C2 1 
I 2 C2 1 
1 4 D2 6 

Orthorhorabic 

G H" s F d 
222 222 1 C1 1 

2 2 C2 1 
1 4 D2 6 

ram2 mm2 1 Ct 1 
2 2 C2 1 
m 2 C2 1 
1 4 1)2 6 

mmm mmm 1 Cl I 
222 2 C2 1 
ram2 2 C2 1 
2]m 2 C2 1 
2 4 D2 6 
m 4 D2 6 
i 4 D2 6 
1 8 D2 x C2 5040 

Chir- 
ality Symbol 
G 1 

N T 
C I (1) 

Chir- 
ality Symbol 
G 2 
G 2 (1) 

N m 
C re(l) 

N 2/m 
C 2/m(2) 
N 2/m(m) 
N Z/m(]') 
C Z/m(1) 

Chir- 
ality Symbol 
G 222 
G 222 (2) 
G 222 (1) 

N ram2 
C ram2(2) 
N mm2(m) 
C ram2(1) 

N mmm 
C mmm(222) 
N mmm(mm2) 
N mmm(2/m) 
C mmm(2) 
N mmm(m) 
N mmm(]') 
C mmm(1) 

an entry in this column if  H is different from H ' ,  but 
only three dots . . .  appear  i f  H = H ' .  

t is the number  obtained by dividing n, the order of  
G, by m, the order of  H;  it is the number  of  different 
permutat ions of colors needed to make up the group 
P. If  H = H ' ,  t is the same as the number  of  colors s, 
and is replaced by three dots . . . .  This column is absent 
for sections I through VI, since s - - t  throughout  this 
part of  the Table. 

F is the abstract group isomorphic with the factor 
group (G/H)  [or (G/H' )  if  H = H ' ] .  F is isomorphic 
with the color permutat ion group P used by the object. 
If  H =  H ' =  1, the abstract structure of G is F. P may 

IV. 

V. 

VI. 

4/m 

6/m 

n t 

4 
2 
1 

2 
1 

4/m 
4 

2/m 
2 
m 
i 
1 

n t 

3 
1 

n t 

6 
3 
2 
1 

3 
m 
1 

6/m 
6 

2/m 
3 
2 
m 
T 
1 

Table (cont.) 

Hypo t etr agonal 
Chir- 

s F d ality Symbol 
1 (72 1 G 4 
2 6"2 1 G 4 (2) 
4 6"4 6 G 4 (1) 

1 6"1 1 N V¢ 
2 (72 1 C ~ (2) 
4 C4 6 C 2~ (1) 

1 C1 1 N 4]m 
2 (?2 1 C 4/m(4) 
2 C2 1 N 4/m(~) 
2 C2 1 N 4/m(2/m) 
4 D2 6 C 4/m(2) 
4 C4 6 N 4/m(m) 
4 6'4 6 N 4/m(]) 
8 6"4 x 6"2 5040 C 4/m(1) 

Hypotrigonal 
Chir- 

s F d ality Symbol 
1 C1 1 G 3 
3 (73 2 G 3 (1) 

1 Cx 1 N 
2 (72 1 C 3 (3) 
3 C3 2 N ~ (1-) 
6 C6 120 C 3 (1) 

Hypohexagonal 
Chir- 

s F d ality Symbol 
1 C1 1 G 6 
2 (72 1 G 6 (3) 
3 6'3 2 G 6 (2) 
6 C6 120 G 6 (1) 

1 G 1 N 
2 (72 1 c ~ (3) 
3 c3 2 N ~(m) 
6 6"6 120 C i5 (1) 

1 C1 1 N 6/m 
2 C2 1 C 6/m(6) 
2 C2 1 N 6/m(6) 
2 C2 1 N 6/m(3-) 
3 Ca 2 N 6/m(2/m) 
4 D2 6 C 6/m(3) 
6 C6 120 C 6/m(2) 
6 6"6 120 N 6]m(,_m) 
6 (76 120 N 6/re(i) 
2 (76 x 6"_, 11! C 6/m(1) 
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be  a s u b g r o u p  o f  t he  ful l  g r o u p  o f  s! p e r m u t a t i o n s  
poss ib l e  fo r  the  s co lo r s  p r e s e n t  o n  t he  object•  ( Y i s  t h e  
s y m b o l  fo r  t he  a b s t r a c t  g r o u p  i s o m o r p h i c  w i t h  532.) 

d is t h e  n u m b e r  s i f t .  I t  is t h e  n u m b e r  o f  d i f f e r en t  
a r r a n g e m e n t s  o f  t he  s a m e  c o l o r s  t h a t  wi l l  p r o d u c e  the  
s a m e  c o l o r e d  p o i n t  g r o u p .  E a c h  s u c h  a r r a n g e m e n t  is a 

VII. 

G 
422 

4mm 

2~2m 

4/mmm 

H '  s H 
422 1 . . .  
222 2 . . .  
4 2 . . .  
2 4 
2* 4 "i" 
1 8 . . .  

4ram 1 . . .  
ram2 2 . . .  
4 2 . . .  
2 4 
m 4 "i" 
1 8 . . .  

Y~2m 1 . . .  
222 2 . . .  
mm2 2 . . .  
-~ 2 . . .  
2 4 
2* 4 i 
m 4 1 
1 8 . . .  

4/mmm 1 . .  
422 2 
4rnm 2 
7~2m 2 
4/m 2 
mmm 2 
4 4 
7~ 4 
222 4 
mm2 4 
2/m 4 
rnrn2* 4 m 
2*/m* 4 T 
m 8 . . .  
T 8 . . .  
2 8 
m* 8 "i" 
2* 8 1 
1 16 . . .  

T a b l e  (cont . )  

Holotetragonal 

t F 

. , .  C l  

• . . C 2  

• . . C 2  

D2 
• 8" Da 
. . .  D4 

. , ,  C 1  

• . . C 2  

• , . C 2  

Dz 
• 8 "  D 4  

. . .  D4 

. . ,  C 1  

• , , C 2  

• , . C 2  

• . , C 2  

Dz 
• 8" D4 
8 D4 

. . .  D4 

. . .  C 1  

C~ 
Cz 
C, 
C2 
C~ 
De 
D2 
D2 
D,  
D2 

8 D 4  

8 0 4  

. . .  D 4  

. . .  D4 
D2 × C2 
D4×C2 

16 D4× 6"2 
. , .  D 4 ×  Cz  

d 
1 
1 
1 
6 
3 
7! 

1 
1 
1 
6 
3 
7! 

1 
1 
1 
1 
6 
3 
3 
7! 

1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
3 
3 
7! 
7! 
7! 
7t/2 
7!/2 
15~ 

Chirality Symbol 
G 422 
G 422 (222) 
G 422 (4) 
G 422 (2) 
G 422 (211) 
a 422 (1) 

N 4ram 
N 4mm(mm2) 
C 4mm(4) 
C 4mm(2) 
C 4ram(roll) 
C 4mm(1) 

N ~2m 
C ~2m(222) 
N 7~2m(mm2) 
N 7~2m(-4") 
C ~2m(2) 
C ~2m(211) 
C ;g2m(ml 1) 
C ~[2m(1) 

N 4/mmm 
C 4/mmm(422) 
N 4/mmm(4mm) 
N 4]mmm(2~2m) 
N 4/mmm(4/m) 
N 4/mmm(mmm) 
C 4/mmm(4) 
N 4/mmm(~) 
C 4/mmm(222) 
N 4/mmm(mm2) 
N 4/mmm(2/m) 
N 4/mmm(mm2lm) 
N 4/mmm(2/ml]~ 
N 4/mmm(m) 
N 4/mmm(T) 
C 4/mmm(2) 
C 4/mmm(mll )  
C 4/mmm(211) 
C 4]mmm(1) 

VIII. 
a ' 

32 

3m 

3m 

H '  s H 
32 1 . . .  
3 2 
2 3 "i" 
1 6 . . .  

3m 1 . . .  
3 2 
m 3 "i" 
1 6 . . .  

~m 1 . . .  
3 2 . . .  
32 2 . . .  
3m 2 
2/m 3 "T" 
3 4 . . .  
T 6 
2 6 "1" 
m 6 1 
1 12 . . .  

Holotrigonal 

t F 

. . .  C l  

C2 
• 6 "  D 3  

. . .  D3 

• . . C 1  

C2 
• 6 "  D 3  

. . .  D 3  

• , . C 1  

• . . C 2  

• . . C 2  

C2 
• 6 "  D 3  

. . .  D2 
Da 

i i  
12 D6 

. . .  D6 

d 
1 
1 
1 
120 

1 
1 
1 
120 

1 
1 
1 
1 
1 
6 
120 
60 

6 0  
11! 

Chirality Symbol 
G 32 
G 32 (3) 
6 32 (211) 
G 32 (1) 

N 3m 
C 3m(3) 
C 3m(mll) 
C 3m(1) 

N ~m 
N 3m(3) 
C ~m(32) 
N 3m(3m) 
N ~m(2/ml-f) 
C ~m(3) 
N ~m('i') 
C ~m(211) 
C 3m(mll) 
C 3m(1) 
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diamorph. A pair of mirror images is counted here as a 
single arrangement. 

Chirality: If H contains rotation-inversions, no 
chirality is possible; this is symbolized N (for 'None'). 
If G contains only pure rotations, geometrical chirality 
(or enantiomorphism) is present; this is noted G (for 
'Geometric'). If G contains rotation-inversions, but H 
does not, then the object exists in right- and left-handed 
forms, but only kvith respect to color arrangement; 
this chromatic chirality (or enantiochroism) is noted C 
(for 'Chromatic'). 

Symbol: This is G(H'IH), or, if H=H', G(H). This 
symbol contains sufficient information to specify 
completely the colored symmetry of the object as 
defined above• 

Notes 
(a) An asterisk superscript on a symmetry element in 

H '  indicates that this symmetry element is not associ- 
ated with a principal axial direction. Thus, take the 
entry 2* under H '  for G=422;  this means that this 
twofold axis is not the one included within the fourfold 

IX. 

G 
622 

6mm 

~m2 

6/mmm 

H "  s 

622 1 
6 2 
32 2 
222 3 
3 4 
2 6 
2* 6 
1 12 

6 m m  

6 
3m 
mm2 
3 
2 
m 

1 

-6m2 

3m 
32 
ram2 
3 
m 

m *  

2 
1 

6/mmm 
622 
6ram 
~m2 
6/m 
Jm 
m m m  

6 

32 
3m 

2/m 
2*/m* 
222 
m*rn*2 
mm*2* 
3 
2 
m 

I 
2* 
m *  

1 

1 
2 
2 
3 
4 
6 
6 

12 

1 
2 
2 
2 
3 
4 
6 
6 
6 

12 

1 
2 
2 
2 
2 
2 
3 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
8 

12 
12 
12 
12 
12 
24 

H 
° . •  

. . °  

"½" 

"i" 

"½" 

"i" 

m 

"i" 
1 

• ° 

t 
2 
2 

l ' n  

° , •  

e , .  

o , °  

"i" 
1 

Table (cont.) 

Holohexagonal 

t F 
. . .  C 1 

. . .  C 2 

• • C 2  

D3 
• • . D 2  

• D 3  

• . .  D 6  

. • .  C 1 

• . . C 2 

c~ 
• 6" 1)3 
. . .  D 2  

• 1)3 

• . .  D 6  

. . .  C I  

• . . C 2 

• . • C 2  

C2 
"6" .Oa 
. . .  D 2  

D3 
i i  o0 
12 .06 

• . .  D6 

• . . C 1  

• . . C 2 

• . . C 2 

• . , C 2 

• . . C 2 

c~ 
• 6" D3  

D2 
,02 
D2 
1)2 
D2 
D3 

12 D6 
12 D6 
12 D6 
12 D6 

. . .  D2x Cz 
• . .  D6 
• . .  D6 

D6 
" ~ _ 4  D 6 X  C 2  

24 D6 x 6"2 
. . .  D6x C2 

d 
1 
1 
1 
1 
6 
120 
60 
60 

1 
1 
1 
1 
6 
2O 
160 
11! 

1 
1 
1 
1 
1 
6 
120 
60 
6O 
11! 

1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
120 
60 
60 
60 
60 
7! 
l l t  
11! 
11! 
11!/2 
11!/2 
23! 

Chirality Symbol 
G 622 
G 622 (6) 
G 622 (32) 
G 622 (22212) 
G 622 (3) 
G 622 (2) 
G 622 (211) 
G 622 (1) 

N 6mm 
C 6mm(6) 
N 6mm(3m) 
C 6mm(mm212) 
C 6mrn(3) 
C 6ram(2) 
C 6mm(mll) 
C 6mm(1) 

N i~m2 
N ~m2((;) 
N ~m2(3m) 
C ~m2(32) 
N ~m2(mm21m) 
C ~;m2(3) 
N ~m2(rn) 
C ~m2(m[1) 
C Bm2(2ll) 
C ~;m2(1) 

N 6/mmm 
C 6/mmm(622) 
N 6/mmm(6mm) 
N 6/mmm(~m2) 
N 6/mmm(6/m) 
N 6/mrnm(~m) 
N 6/mmm(mmml2/m) 
C 6/mmm(6) 
N 6/mmm(~) 
C 6/mmm(32) 
N 6/mmrn(3m) 
N 6/mmm(~ 
N 6]mmm(2/m) 
N 6/mmm(2/m[]') 
C 6/mmm(22212) 
C 6/mmm(mm212) 
N 6/mmm(mm2]m) 
C 6/mmm(3) 
C 6/mmm(2) 
N 6/mmm(m) 
N 6/mmm(1-) 
C 6/mmm(2[1) 
C 6/mmm(mll) 
C 6/mmm(1) 
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axis. The asterisk does not appear in the symbol 
G(H'IH)=422(211), since no ambiguity is possible in 
this case. If ambiguity is possible, asterisks appear in 
the symbol G(H'IH), e.g., m3m(211) and m3m(2*ll) 
are different• Thus, in cases where ambiguities can 
occur, asterisks are used to remove them. 

(b) If G, H',  and H are all the same, the point group 
is just the classical geometric one, i.e., a one-colored 
point group. In this case, the usual international 
symbol is used as the colored symmetry symbol. 

Example 
An example may be helpful at this point. Let the 

object be a regular octahedron with opposite triangular 
faces colored alike. Then G=m3m, H'='3m, H = T  
and the symbol is m3m(3mlT). (See Section XI of the 
Table•) The order of G is 48, of H '  is 12, and of H i s  2. 

48 _ 4 colors present, and _4~ = 24 Thus, there are -i~-- 
permutations are required. The total number of 
possible permutations of four colors is 4! =24, so that 
P is the complete permutation group, which has the 
abstract structure O. The subgroup H = T ,  together 
with its 23 cosets, make up the factor group (m3m/T); 
each of its elements is a pair of geometrical operations 
connected to one of the 24 permutations of the four 
colors present. Since H = T ,  each asymmetric domain 
and its enantiomorph occur with the same color, and 
the object is equal to its mirror image; there is thus no 
chirality present• Since 4! = 24 and P has the order 24, 
there is only one diamorph possible. 

Shubnikov & Koptsik (1974) present tables ton 
pages 266-267, 287-290, and 381-384) listing all of the 
colored crystallographic point groups G(H'IH) and 
G(H) given in the Table here. They omit from their 
tables, however, the colored icosahedral point groups. 
They do not note the number of diamorphs, nor the 
types of chirality present. 

Shubnikov & Koptsik (1974) use a notation different 
from the one used in the Table presented here. They 

include a great deal of relevant information in each of 
their symbols; for instance" my m3m(4m21222) appears 
in their tables thus" 

4(2,2) 2(2) ) (6) 
~ ' ( 6 )  14(2'2)1m(2'2)1211 

m(2.2) 

In my symbol, all the same information is implied: the 
order of m3m is 48, and that of 4m2 is 8; this gives 
-~ = 6 as the number of colors. The subgroup H is 222, 
of order 4; - ~ =  12 is, therefore, the order of P, the 
permutation group• P must be isomorphic with F, and 
F must be either C6 x C2, D6, or T, the only crystallo- 
graphically possible ones of order 12. If it is necessary 
to know the exact form of F, expand m3m into cosets 
of its subgroup 222. It turns out that, of the twelve 
cosets, only two consist of elements of order 6, and 
these are inverses of each other. Consequently, F =  
D6, since T contains no elements of order 6, and 
C6 × C2 contains four different elements of order 6. 
Each permutation in P corresponds to 48---4 different 
operations of G. Since G contains improper rotations, 
while H does not, this colored point group has 
chromatic chirality. The full permutation group of 
six colors contains 6!=720 members, while P is of 
order 12; hence, there are 60 diamorphs. The color 
permutation p~ associated with each geometrical 
operation g~ is easily-written down by inspection of a 
model, or a diagram, of an object with the colored 
point group m3m~m21222). 

Wittke & Garrido (1959) have listed all but one of 
the combinations of G and H '  possible for the crys- 
tallographic point groups. (They apparently over- 
looked the combination of m3m with mm2 where the 2 
of mm2 is II to 4 of m3m and the m's are diagonal.) 
They assigned a number s of colors, just as other 
authors have done, by dividing the order of G by that 
of H ' .  However, differently from other workers, they 
fixed one of the possible subgroups H '  in a single posi- 

X. 

G 
23 

m3 

H' s H 
23 1 . . .  
222 3 . 
3 4 "i 
2 6 1 
1 12 . . .  
m3 1 . . .  
23 2 . . .  
mmm 3 

4 "(r 
222 6 . . o 

ram2 6 1 
2/m 6 I 
3 8 1 
T 12 
2 12 "i" 
m 12 1 
1 24 . . .  

Table (cont.) 

Hypocubic 
t F 

, . .  C1  

• c 3  
i i  r 
12 T 

. . .  T 

, . •  C 1  

• o . C 2 

C3 
"ii r 

C6 
"½i rxc~  
12 T 
24 Tx C2 

T 
"ii r x c ,  
24 Tx C2 

. . .  Tx C2 

d 
1 
2 
2 
60 
11! 
1 
1 
2 
2 
120 
30 
60 
1680 
11! 
11 !/2 
11 !/2 
23! 

Chirality 
G 
G 
G 
G 
G 
N 
C 
N 
N 
C 
C 
N 
C 
N 
C 
C 
C 

Symbol 
23 
23 (222) 
23 (311) 
23 (211) 
23 (1) 
m3 
m3(23) 
m3(mmm) 
m3(~lT) 
m3(222) 
m3(mm211) 
m3( 2/ml-f ) 
m3(311) 
rn3(T) 
m3(211) 
m3(mll) 
m3(1) 
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t ion  and  d is t r ibu ted  the s colors so tha t  all the colors 
are unaffected by the opera t ions  of  this  H ' .  [Each 
asymmet r i c  unit ,  i.e., general  face (hkl), has a single 
color  in this  scheme, ju s t  as in mine.] This  p rocedure  
results  in a color  d i s t r ibu t ion  tha t  does no t  obey my 
rules of  co lored  symmet ry ,  unless H ' = H  is an  
i nva r i an t  subgroup  of  G. 

S h u b n i k o v  & K o p t s i k  (1974) have  ra t ional ized  the 
W i t t k e - G a r r i d o  colored  po in t  groups  wi th  H ' # H ,  

by defining colored s y m m e t r y  opera t ions  tha t  pe rmute  
colors  in more  than  one way at  the same time. F o r  
ins tance :  the opera t ion  of  a 4 (+4I axis ( S h u b n i k o v -  
Kop t s ik  no ta t ion)  permutes  the four  colors  a, b, c, d by  
the opera tor  4(abcd) in the region above the p lane  
normal  to the fourfold  color  axis, and  by the ope ra to r  
4(adcb) below this  plane• Such opera tors  are c lumsy 
to use, and  inconven ien t  in m a n y  o ther  ways.  
Physica l  objects colored accord ing  to W i t t k e - G a r r i d o  

XI. 

G 
432 

7i3m 

m3m 

H'  s H 
432 1 . . .  
23 2 
422 3 222 
32 4 1 
222 6 
2*2*2 6 ""1" 
4 6 1 
3 8 1 
2 12 1 
2* 12 1 
1 24 . . .  

~3m 1 . . .  
23 2 
~m2 3 ½2½ 
3m 4 1 
222 6 . 
ram2 6 i" 
~ 6 1 
3 8 1 
2 12 1 
m 12 1 
1 24 . . .  

m3m 1 . . .  
432 2 . . .  
~3m 2 . . .  
m3 2 . . .  
4/mmm 3 mmm 
23 4 
~rn 4 "]'" 
422 6 222 
~m*2 6 222 
4/m 6 i 
~m2* 6 1 
4ram 6 1 
mmm 6 
m*m*m 6 "(F" 
3m 8 1 
32 8 1 
3 8 i 
4 12 1 

12 1 
222 12 
22*2* 12 " " 1" 
ram2 12 1 
m'm*2 12 1 
ram*2* 12 1 
2/m 12 1 
2*/m* 12 T 
3 16 1 
2 24 1 
2* 24 1 
m 24 1 
m* 24 1 
T 24 . . .  
1 48 . . .  

Table  (cont.) 

Holocubic 

t F 
. . .  C l  

C2 
6"" D3 
24 O 

D3 
i i  o 
24 O 
24 O 
24 O 
24 O 
• . . O 

• . .  C 1  

. .  C 2  

24 O 
• D3 

i i  o 
24 O 
24 O 
24 O 
24 O 
• . . O 

• . .  C I  

• . ° 

~ ° •  

12 
12 
24 
48 
48 

i4" 
48 
48 
24 
48 
48 

48" 
48 
48 
48 
24 
24 
48 
48 
48 
48 
48 

C~ 
G 
C2 
Da 
D2 
O 
De 
D6 
O 
O×C2 
OxC2 
D3 
O 
0×6"2 
OxC2 
O 
OxC2 
O × G  
De 
OxC2 
OxC2 
OxC2 
OxC2 
0 
0 
O x G  
O x G  
0×C2 
OxC2 
O x G  
0 
OxC2 

d 
1 
1 
1 
1 
120 
30 
30 
1680 
11!/2 
11l/2 
23! 

1 
1 
1 
1 
120 
30 
30 
1680 
11!/2 
11!/2 
23! 

1 
1 
1 
1 
1 
6 
1 
6O 
6O 
3O 
15 
15 
120 
3O 
84O 
84O 
1680 
11 !/4 
11!/4 
11 
11!/4 
11!/4 
111/4 
11!/4 
11!/2 
11l/2 
151/3 
23!/2 
23!/2 
23!/2 
23l/2 
23! 
47! 

Chirality 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 

N 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

N 
C 
N 
N 
N 
C 
N 
C 
C 
N 
C 
C 
N 
N 
C 
C 
N 
C 
C 
C 
C 
C 
C 
C 
N 
N 
C 
C 
C 
C 
C 
N 
C 

Symbol 
432 
432 (23) 
;432 (4221222) 
432 (3211) 
432 (222) 
432 (22211) 
432 (411) 
432 (311) 
432 (211) 
432 (2"11) 
432 (1) 

43m 
~[3m(23) 
~3m(~m21222) 
~3m(3ml 1) 
~3m(222) 
~3m(mm211) 
;g3m(~ll) 
:g3m(311) 
~3m(211) 
;g3m(mll) 
~3m(1) 

m3m 
m3m(432) 
m3m('43m) 
m3m(m3) 
m3m(4/mmmlmmm) 
m3m(23) 
m3m(3mll-) 
m3m(4221222) 
m3m(~m21222) 
m3m(4/mll-) 
m3m(~m211) 
m3m(4mmll ) 
m3m(mmm) 
m3rn(rnrnml 1-) 
m3m(3mll) 
m3m(32tl) 
m3m(~l]') 
m3m(411) 
m3m(~[1) 
m3m(222) 
m3m(22211) 
m3m(mm211) 
m3m(m*m*211) 
m3m(mm*2*ll) 
m3m(2/ml]') 
m3m(2*/m*ll-) 
m3m(311) 
m3m(211) 
m3m(2*ll) 
m3m(mll) 
m3m(m*ll) 
m3m(]) 
m3m(1) 
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XlI. 
G 
532 

53m 

Table  (cont.) 

Icosahedral 
H' s H t F 
532 1 • • . C1 
23 5 i 613 Y 
52 6 1 60 Y 
32 10 1 60 Y 
5 12 1 60 Y 
222 15 1 60 Y 
3 20 1 60 Y 
2 30 1 60 Y 
1 60 . . . . . .  Y 

53m 1 . . . . . .  C1 
532 2 • Cz 
m3 5 "'~" 60 Y 
5m 6 T 60 Y 
23 10 1 120 Y× C2 
3m 10 T 60 Y 
3 12 T 60 Y 
52 12 1 120 Yx C2 
5m 12 1 120 Yx (72 
mmm 15 T 60 Y 

20 T 60 Y 
32 20 1 120 Y× C2 
3m 20 1 120 Y× C2 
5 24 1 120 Yx C2 
222 30 1 120 Y x C2 
mm2 30 1 120 Y x C2 
2/m 30 T 60 Y 
3 40 1 120 Yx (72 
2 60 1 120 Yx Cz 
m 60 1 120 Yx C2 
i 60 . . . . . .  Y 
1 120 . . . . . .  Yx 6"2 

d 
1 
2 
12 
9!/6 
11!/5 
14!/4 
19!/3 
29!/2 
59! 

1 
1 
2 
12 
9!/12 
9!/6 
11!f5 
l l ! q 0  
11!110 
14!I4 
19!I3 
19!r6 
19!16 
23 ! I5 
29l r4 
29 ! ¢4 
29! t2 
39!t3 
59! I2 
591 ¢2 
59! 
119! 

Chirality 
G 
G 
G 
G 
G 
G 
G 
G 
G 

N 
C 
N 
N 
C 
N 
N 
C 
C 
N 
N 
C 
C 
C .  
C 
C 
N 
C 
C 
C 
N 
C 

Symbol 
532 
532 (2311) 
532 (5211) 
532 (3211) 
532 (511) 
532 (22211) 
532 (aid 
532 (211) 
532 (1) 

~ m  
~'Jm(532) 
5~m(malT) 
5-Jm(Smli-) 
5--'Jm(2311) 
~--'Jm(3m Ii-) 
53m(5113 
~m(5211) 
5-'3m(5ml 1) 
3-'Jm(mmmlT) 
~m(~lT) 
~m(3211) 
5"Jm(3ml 1) 
53m(511) 
5-3m(22211) 
5~m(mm211) 
"53m(2/ml]') 
5Jm(311) 
~m(211) 
53m(mll) 
5~m(i) 
3-3m(1) 

po in t  g roups  wi th  H ' v ~ H  provide  some asymmetr ic  
subuni ts  wi th  ne ighbors  o f  the same color,  while 
o thers  have  only  differently co lored  neighbors .  Thus,  
such a g roup  does no t  t rea t  an  object 's  subuni ts  con-  
sistently, i f  H ' - ~  H. The  W i t t k e - G a r r i d o  colored  po in t  
groups  are listed in the book ,  Symmetry in Science and 
Art, by S h u b n i k o v  & Kop t s ik  (1974); they  will no t  be 
cons idered  fur ther  here. 
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An Example of the Use of Quartet and Triplet Structure Invariants when Enantiomorph 
Discrimination is Difficult 
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Problems relating to enantiomorph discrimination in the structure determination of the alborixin 
antibiotic (C4sOI4H~,K +) are studied. To select the starting set, quartet structure invariants are used 
to define two orthogonal classes of reflexions, and a variation of the tangent formula refinement using 
the phases of the triplet invariants is described. 

I n t r o d u c t i o n  1970) is the best example,  p rob lems  rare ly  occur  in 
crystal  s t ructure  de te rmina t ion ,  even if  the  n u m b e r  o f  

Since the use and  a u t o m a t i o n  o f m u l t i s o l u t i o n  methods ,  heavy  a toms  in the asymmet r ic  uni t  is r a the r  large (50 
o f  which  M U L T A N  (Germain ,  Ma in  & Wool f son ,  to  80 for  instance) .  The  few failures o f  M U L T A N  


